
CSE-111 Great Ideas in Computer Science

Albert Y. C. Chen

University at Buffalo, SUNY

!! Finally, putting everything all together. Also, we’ll learn

how complicated things are simplified by thinking in

the object oriented way.

"! From logic gates to making CPUs!

"! From machine language to Karel-the-robot to 3D dragon

drawing using the concepts of OOP!!

!! A gentle introduction to the fields of research in

computer science.

"! What can we do with all the powerful tools we have

developed in the past few decades?

!! How are logic gates implemented on “semi-

conductors”?

!! e.g. NAND gate using CMOS:

!! Half Adder (1-bit) Full Adder (1-bit)

!! Ripple Carry Adder Carry look-ahead Adder

!! ALU: Basic building block for

computer’s CPU (Central

Processing Unit)

"! Takes input A, B, then perform

the operation according to the

given instruction F.

#! Addition, subtraction

#! Multiplication, division (optional)

#! Bitwise Logic op. (AND, OR, NOT)

#! Bit shifting operations

"! E.g. (right) 2 bit ALU that does

XOR, AND, OR, addition.

!! The “die” of Intel’s Core 2 Duo (Conroe) CPU

"! With machines so complicated and powerful, how are we
going to send instructions (the control signal “F” in the ALU
example) to the ALU?

!! Starting with the 2 bit ALU.

"! We can have 00, 01, 10, 11 four different kind of control

signals, i.e. we can integrate 4 different operations into this

ALU (e.g. F=00 XOR; F=01 AND; F=10 OR; F=11 addition).

"! Examples

#! Suppose we want to perform A+B, where A = 00 and B = 10, and

suppose the instructions sent to the ALU are 6 Boolean digits of the

order “2 bit command” “2 bit A” “2 bit B”.

#! We’ll look up the command for “+”, which is “11”, then write

“110010” in our program as the instruction for the ALU.

#! When the ALU receives 110010, it will decode it and know that you

want it to set F=11 (which is to perform addition”, and the inputs are

A = 00, B = 10

!! Are these four instructions sufficiently enough?
"! Not actually, we’ll also need instructions to:

#! Control flow instructions such as “if”, “else”.

#! Data control instructions to move things around in the memory.

!! Should all commands be implemented in hardware?
"! CISC (Complex Instruction Set Computer):

#! Powerful commands, yet takes longer for each command to be
executed.

"! RISC (Reduced Instruction Set Computer):
#! Simpler commands, each command runs faster, but may takes more

commands to do a job.

"! For example, a ALU only capable of doing “addition” can
calculate “2x5” by doing “2+2+2+2+2”.

!! Writing a program directly in CPU instructions:
 01010010 11001011 10100101 000100100 10011010 ...

"! Ugh ... Can we write these in decimal or hexadecimal?

"! OK, here’s the 32-bit x86 machine code (1st generation
programming language) to calculate the nth Fibonacci
number (i.e. 0,1,1,2,3,5,8,13,21,34,55,89,...)

 8B542408 83FA0077 06B80000 0000C383 FA027706 B8010000 00C353BB

 01000000 B9010000 008D0419 83FA0376 078BD98B C84AEBF1 5BC3

!! Instructions that we can finally remember (sort of...)

!! Still “Machine Dependent”, thus still “low level”.

"! i.e. code would need to be completely re-written whenever Intel or AMD

introduces a new CPU...

!! Fibonacci number calculator in MASM assembly language:

fib:

 mov edx, [esp+8]
 cmp edx, 0

 ja @f
 mov eax, 0

 ret

 @@:
 cmp edx, 2

 ja @f
 mov eax, 1

 ret

 @@:

 push ebx
 mov ebx, 1

 mov ecx, 1

 @@:

 lea eax, [ebx+ecx]
 cmp edx, 3

 jbe @f
 mov ebx, ecx

 mov ecx, eax

 dec edx

 jmp @b

 @@:
 pop ebx

 ret

!! Provides a higher level of abstraction from details of

the computer (e.g. CPU commands, registers, ...etc.)

"! Our Karel-the-robot language is high level.

#! So are Basic, C, C++, Java, Python, ... almost any programming

language you can think of.

#! The term “high” doesn’t mean it’s superior to low level languages, its
that it provides a higher level of abstraction.

"! So, what’s the difference?

#! Instead of sending “11010101” or “mov edx [esp+8]”, we use

commands that are very similar to plain English (if, else; while {...})

#! Instead of specifying which “CPU register” or “memory location”

we’re going to access, we use “Variables” to store data.

!! Fibonacci Numbers: 0,1,1,2,3,5,8,13,21,34,55,89,...
"! The Nth number is the sum of the (n-1)th and (n-2)th number

!! Using Karel’s parental language “Pascal”:
 program fibonacci

 var

 NumOfFibs, i, prevNumOne, prevNumTwo, currentNumber : integer;

 begin

 NumOfFibs := 10; i:=0; prevNumOne := 1; prevNumTwo := 0;

 writeln(prevNumTwo); writeln(prevNumOne);

 while i<NumOfFibs-2 do begin

 currentNumber := prevNumOne + prevNumTwo;

 writeln(currentNumber);

 i := i +1;

 prevNumTwo := prevNumOne;

 prevNumOne := currentNumber;

 end;

 end;

!! Compilers do all the hard work of

translating programming languages to

machine-specific instructions.

!! When we write in Karel and hit the

button “compile”, our code is examined

by the compiler in the following order:

"! Lexicons (the vocabulary we used, e.g. “if”)

"! Syntax (e.g. missing “;”, “end;”)

"! Semantic...

!! A translator of this sort will be needed

for every two layers in the programming
language pyramid shown in the upper

right figure.

!! Why OOP?

"! Hardware and software became increasingly complex.

"! To assure “quality” and “code re-usability”

#! It’s impossible for a 3D game developer nowadays to write codes for

each pixel he/she wants to display on the screen – It will not only be

slow, but also prone to error.

Spacewar! (1961) Ultima1 (1980) Doom (1993) World of Warcraft (2004)

!! Yet another way of thinking in/teaching OOP.
"! Today, if we are “dragon behavior/motion specialists” and

hired by our favorite gaming company to develop the latest
game.
#! Wait... I don’t know how to code in 3D yet!?

 (don’t panic, be cool...)

#! Let’s ask the programmers to do us a favor:

 give us a black box, we’ll input the (x,y,z)

 location of the dragon’s major joints, and

 the box will draw the dragon.

#! The programmers would go home and think:

 I guess the dragon’s head, torso, tail, two

 wings and four legs will move separately.

 Maybe I’ll need 9 smaller not-so-black boxes

 to implement the movements of these parts.

"! (Continuing with the “dragon
coders” in the last slide)

#! Each smaller box will need at
least the following components:
a muscle object, and a skin
object. The smaller not-so-black
box will draw the head/tail
according to the muscle object
and skin object.

#! Suppose the “skin objects” are
composed of 10 different kinds
of scales, which we call it the
“scale object”. Skin is drawn
according to the scale objects
provided.

#! Finally, each scale is composed
of multiple “polygons” (basic
drawing unit of 3D objects)

!! What have we learned from the hardware and

software sides of the story?
"! When things gets huge and complicated, we better break down the

problem nicely, work as a team, and each be in charge of developing a

reliable part (object).

"! When we fit the parts (objects) together (or using those developed by

our predecessors), we can create some really nice stuff.

!! What tools besides “the concept of OOP” can we rely

on to tackle other problems?
"! Powerful hardware, a nice operating system, high-level programming

languages, and compilers that takes care of most low level interactions

with the hardware.

!! Instead of starting with a boring long list of research
topics, let’s ask ourselves, what do we want our
computers to do for us?

!! Basic problems that trouble us:
"! “Run faster you stupid computer!!! ”

#! If you want to devote yourself to fixing this problem, please refer to:
Digital Logic, VLSI, Computer Architecture, High Speed Computing
(including distributed and parallel processing)

"! “OS crashed!!! @#$%&*)#@% !!!”
#! Operating System, Embedded Systems

"! “Run/Compile you stupid Karel!!!”
#! Programming Languages, Compilers

!! Intermediate problems that trouble us:

"! “Why is my (wireless) internet so slow?”

#! Network Design and Analysis, Wireless and Sensor Networks,

Security, probably even some Information Theory and Coding, Graph

Theories, Operating Systems

"! “My SPAM filter doesn’t work... Can I design a better one?”

#! Machine Learning

"! “I told my cell to call Monica, but it called mom”

#! Signal Processing and Machine Learning,

 better off with knowledge in Linear Algebra,

 Numerical Analysis, Probability and Statistics.

!! Advanced problems that might occasionally trouble us:

"! “I want to study science, and help create a world without

cancer” (from RPCI’s commercials)

#! There’s still a long way to go, but here’s what computer scientists

can help other disciplines of research analyze their data:

#! Bioinformatics (including gene analysis) , Cognitive Science,

Computational Chemistry, Computational Neuroscience,

Computational Physics.

!! Advanced problems that might never trouble us:

"! Problems such as the Traveling Salesman Problem (TSP):

#! Given a number of cities and the costs of travelling from any city to

any other city, what is the least-cost round-trip route that visits each

city exactly once and then returns to the starting city?

#! Algorithms, Analysis of Algorithms, Computational Complexity

Theory, Computability Theory, Graph Theory, ... etc.

!! Problems that only trouble us in our daydreams:
"! “Can’t my computer just do everything for me? (study, take

tests, drive the car, feed me...)”
#! Artificial Intelligence, Computer Vision, Machine Learning, Pattern

Recognition, Robotics.

"! How hard is it to teach a computer to

 tell between leaves and grass, sky and

 ocean, roads and buildings?
#! Very very hard...

#! Even the most advanced systems could

 only achieve around 75%-80% accuracy.

!! Problems, problems, problems:

"! Given an image, what color space should one use? Or

should one use infrared, ultraviolet sensors instead of

visible light?

 RGB HSV/HSB YUV RGB v.s. visible colors

"! Take leaves for example, should we learn by their color?

texture? shape? size!!?

"! Since there is no “universal solution”, we usually take MANY

of the features into account.

"! How are we going to weigh/normalize different features?

How are we going to calculate the similarity between

features?

"! Pattern Recognition will shed some light.

"! Pattern Recognition will try to learn/discriminate the
distribution of different groups of objects.

 LDA K-means SVM

#! These are just the “easier to illustrate” ones.

#! Supervised v.s. unsupervised?

#! Over learning v.s. generality?

#! Parametric v.s. Non-parametric?

#! Generative Models v.s. Discriminative methods?

"! This is just the beginning of all the struggles !

